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A SPECIAL RELATIONSHIP IN SPHEROIDAL WAVE FUNCTIONS AND 
ITS APPLICATION TO CONTACT PROBLEMS* 

S.M. MEHITARYAN 

A spectral and kindred relationship are set up by methods of the 
theory of the generalized potential /1/ for an integral operator generated 
by a symmetric difference kernel in the form of a Macdonald function in two 
identical semi-infinite intervals ((-=q -Q),(u,co)} that contain spheroidal 
wave functions. The formula for the expansion of an arbitrary function in 
these functions is also set up by a well-known method /2/. On the basis 
of the results obtained, a solution is then constructed for the integral 
equation of the contact problem of the impression of two identical stamps 
with half-plane bases into a half-space being deformed in a power-law form 
in the formulation of /3/. 

This contact problem can be described by the same integral equation 
when the elastic modulus of a linearly elastic half-space changes with 
depth according to a power law /l/. 

The spectral relationships in classical orthogonal polynomials for 
extensive classes of integral operators in mathematical physics are 
presented in /4,5/, where the method of orthogonal polynomials based on 
them is also elucidated, and numerous applications of this method are given 
to contact and mixed problems of elasticity theory. We also mention /6-9/ 
which are related directly to the investigation presented.here. 

1, Consider the integral equation 

-0. OD 

in order to set up a spectral relationship for the integral operator 9% (y) = Km,, where K,(y) 
is the Macdonald function. 
gamma function) 

To this end, following /8/, we introduce the function (r(x) is the 

r (Y, 2, s) = u, (y, z)= s U (x, y, 2) ei’” dx = (1.2) 
-0D 

*Prikl,Matem.Mekhan.,Vol.48,5,845-853,1984 
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Whkh is the Fourier transform in the variable I for the generalized potential 

v(C.tl)dF;d 
U~z~y~z~~~~~~~-~~+~~-~~~~d~~~~~ 

o=@=O; IsI<=, lyl>u, 

which has a finite source power. 
ft follows fra /X,8/ that integral equation (1.1) is equivalent to the followingboundary 

value problem: 

$+$L- +-&'v=o. (YlZ)EL (1.3) 

v (Y, 2, s) Lo = B‘ (Y). (Y, 0) EL; v (Y, 2, s) * 0, Y' + a* += 

& (Y) = )/i2+' 1s l’[r (I’ +vr)r’f‘ (Y) 

for the whole ~0% plane with the disconnected rays L={a=O;--oo(yg--a,agy<oo}. 
After the solution of the boundary value problem (1.3) has been constructed, the source 

density, i.e., the solution of (l.l), is determined from the formula /8/ 

-2q,(Y)=lim sgnzlt~*~-$&], 
L 

(y,O)EL (1.4) 24 

We construct the solution of the boundary value problem (1.3) by separation of variables. 
To use the available results from /lo/ for this purpose, we set 

v (Y, 2, s) = lz 1-p w (Y, 2,s) (1.5) 

Then the differential equation from (1.3) is converted into the following: 

Furthermore, we introduce the elliptic coordinates (/lo/, p. 136) 

w=y+ie=ach6, ~=u+iv,IuiCce,O~v,<n (1.7) 

Y = a ch u cos v, z = ash u sin v 

By using the conformal mapping (1.7), the complex w plane withthe slit L is evidently 
mapped into the strip II={- 00 <u< co,0 G vgn} where the line v = 0 corresponds to the 
twice-covered ray y >a, while the line v = n corresponds to the twice-covered ray yg -a 
of the w plane. Taking (1.7) into account we now set 

W (y, 2,s) = W (a ch u co9 v, ash u sin v,.s) = W, (u, v) = P (u) G (v) (4.8) 

Using the results from /lo/, after certain elementary manipulations we reduce the partial 
differential equation (1.6) to the following two ordinary differential equations 

F" -+rp - 2q ch 214 + u (1 - u) sh-% ul P = 0, --oo < u <a 

G” - IfJ - 2q co9 2v - u (1 - p) sin-* VI G.= 0, 0 < v < n, 

q = aas 

(1.9) 

(1.10) 

where #3 is the separation parameter. We note that if we set u = iu formally,then (1.10) 
reduces to (1.9). Hence, we can limit ourselves to one of them, for instance, (1.10). 

my using the substitution G(V)= v/;Thi!?(v) we convert (1.10) into a differential 
equation for spheroidal wave functions (/lo/, p. 170) 

Equation (1.11) 
The functions 

(1.12) 

+[X+4~~in*v-~*s~n-*v]H~O 

A = +I - ‘/, - 28 = -p (!!I) - V1 - 2l3,8 = --Q, x = '/, -Y 

and its solution are examined in detail in /11,12/. 

(1.11) 

p$ (~09 V, e) = ,j, (- iy UC, p (e) p:+?, ccos v), O<v<n 
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are two linearly independent solutions of (1.111, where v is the characteristic index of (l-11), 
and h =.A$ (0) and 5" (0) = v (v + I), Pvx (z) and Q,,%(z) are Legendre functions of the first and 
second kinds, respectively, while the coefficients u:,~(@ are determined from trinomial 
recursion relationships (/lo/, p. 171). These coefficients are determined 

uz.0 (e) = &-I., (8) = &,: 6% 4.0 (0) = 1 

To determine the characteristic index v, we note the following. This 
determined by the value 0 = 0 since 5" (0) = v (v + 1). Consequently, we 
whereupon it goes over into the Legendre differential equation examined in 
planeanalogueof theproblem formulated here is discussed. 

Therefore 
v (v + 1) = -cc - I/,, a = $ (0) 

from which we have, taking appropriate results from /9/ into account, 

v= --'in + i f/a, a> 0 

such that 

parameter is 
set 8 = 0 in (1.111, 
/WI in which the 

For such values of v we have from the above-mentioned trinomial recurrent relationships 

a::,,(e) =~:~_~,,(e)= a:,_, (e) = US, ,(e) (1.13) 

For a complete determination of these coefficients, we normalize them by the conditions 

c/12/, p. 286) 
m 

r(V+X+2r+l)r(v--++i) rQ;,,ce,l' 1 
=m* GsO (e)> 0 

ti-m 

Starting from the above, we represent the solution of (1.10) in the form 

G (v) = I/sin iAPsvX (CO9 U, e) + &w (COS V, e)l, 0 < u < n; 

and construct its solution: even (G,X (n - V) = Gz,, (v). 0 C v < x) and odd @X.X (x - V) = 
--G;,, (v), 0 < v(n) relative to the point v = n/2. Using the formulas C/12/, p. 287) as in 
/9/, we will have 

G&t (I?) = I/sin (P; (co5 Y, 0) * $ Re ;y;;;;) Q",, (cos u, e)]) , O<v<n (1.14) 

v=--‘/,+il/& a=T2, z>O, x=‘l,-p, b=@-iiT)l2 

where according to (1.13) it follows from (1.12) that 

~~,,(~~~~,e) = prv (cosv,~), Q:+, (COSV,~) =~J:~(cosu, e) 

We now turn to (1.9). The unique solution of this equation that is bounded on the axis 
-co<u<oo and vanishes at infinity, has the form /lo-12/ 

FvX (u) = 1/t sh u 1 &x(*) (ch u, e), --00 < u < m (1.15) 

where SVX(*)(z,@) is a spheroidal wave function of the third kind. The following representation 
can be obtained for this function 

S:"' (ch u,EI)= ly"(e) 1 th 11 ImX(ch II)-% X 

J_ (- i)'G,, (e)&+lV(2ficha) (--<a<~) 

1;~ (e) = (n'q)-'~~ exp h (2~ - 3i)/41 svx (e), q = ~5~4 

(1.16) 

s,x(e)=[ 2 (-i)ru;,,(e)]-19 v=-+++c T>O 
r--em 

Using (1.13) it can be shown that 

qY'(ch u, e)= - Lp (chic, e) (1.17) 

Therefore, according to (1.5) and (1.81, the boundary value problem (1.3) has a normal 
solution 
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which is bounded in the strip n=(- m< U< 00, 0 < vQ X} and vanishes at infinity, where 
the functions F?(u) are expressed by (1.15), and (1.16), the functions e,(v) by (1.14), 
and the variables y, z; &,tt are connected by the dependence (1.7). 

To calculate the source density corresponding to the potential (1.18), we use the 
representations of the functions P,X(cos v) and QyU(cos u) in terms of the hypergeometric 
functions f/13/, p. 144-148) and by virtue of the dependence9 (1.7), we convert (1.4) to the 
form 

W - 2x~,,(y)=(ashu)*~~lim(sinu)~~, O<s < x) 
e-0 

Furthermore, proceeding exactly as in /9/ and taking (1.2) into account, after some 
reduction we arrive at the spectral relationship 

(1.19) 

We also obtain the integral relations related to (1.19) when O<y<a. The line ?A= 
0 (0 < v < n/2) corresponds to this interval. It is therefore neceesary to calculate the 
vafue [(ah t()*Fy" (u)l+a. To this end we use the well-known relationships between thespheroidal 
wave functions t/10/, pp. 173-175), which yield 

L?c"'(ch u,O)=[n sh(m)]'l exp[n (2~ + ip)] x 

{sin(2n@KVX(0)Qs>_I(ch u,e)- 

i sin(Zrr6)m QsT(ch u,tT)), - OQ <u < m 

~$(e)= 2-~(p;i4)v/sr (28) e~pp- 3q2e-k ~41 x ~v~(~)~V~(~GFIF 

(v = --If* + ir, z > 0, 6 = (p - iT)/2, --v - 1 =; G, X = 'i, - p) 

Furthermore, taking account of (1.14)-(1.16) and (l.ZO), we obtain the following 
relationships again by using (1.2) and (1.18) 

fs*(&Gs) =hvfx(l- y*/aa)X%$x [arcces (y /a)), 0 < !/ <a 

(1.20) 

integral 

(1.21) 

Evidently ;ti; = -iM,+ In place of (1.17) this ensures the reality of relationships 
(1.19) and (1.21). Since K,,(s) and &P(s) are analytic functions of the parameter c, by 
the Schwartz symmetry principle , these relationships can be continued analytically in the 
band 1 Rep 1 Cl/,. 

Note that the relationships (1.21) can be utilized in contact and maxad problems of 
elasticity theory for calculatinq displacements of the foundation outside the stamps or the 
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fracture stresses outside the slits in bulky bodies. 

2, We now turn to the equation of expanding an arbitrary function in functions &l'@) 

(ch U, 9j for which we consider the differential equation (1.9) in the interval O<u< 00 and 
we will treat the parameter a = o(O) as a complex parameter in the upper half-plane Im a> 0. 
Both ends of the interval under consideration are singular for this equation; hence, we take 
u = b#O as reference point. we take the functions m Ps$ (chu,6) and T/S= Ps,-~ (chu,9) 
as two linearly-independent solutions of this equation, andfollowing /2/, we construct its 

solutions cp(u,a) and x(u,a) such that 

tp (b, a) = 0, cp’ (b, a) = -i 

Ix (b, a) = 1; x’ (b, a) = qO 

It is seen that 

Furthermore, 
write 

It therefore follows at once that all the solutions (1.9) belong to the space La@,@ 

(2.1) cp (u, a) = n 12 sin (nx)l-5,~ (0) su" (0) I/sh b sh u x 
IPS,~ (oh u, 8) l’s,-* (ch b, 0) - Ps.,* (ch u, 9) Psv,” (ch b, e)] 

x (u, a) = x 12 sin (xx)Ps,? (fi) sv-% (8) ah b fsm x 
[psvx (oh u, 9) Psy‘-x (ch b, (3) -Ps,~ (oh IL,@ Psv"'(ch 6, 0)l 

(q,, = Ve cth b, 0 < II < ao) 

by using the well-known asymptotic representations (/lo/, p. 177), we can 

Ps,x (ch II, e) - 1r (1 -x) s$ (e)l-1 tsh (d2)P + 0 {I sh (ul2)Pf 
~P~VX (ch U, e)id ch u N -X f4r (1 - X) += (e)r1 x 

Ish (U I 2)1-px + 0 {Ish (U I 2)y}, u + 0 

(2.2) 

for ImjfZ>O, i.e., the case of the Weyl limit circle will hold at the point u =O. The 
limit circle is the limit of the circles 

as bO+ 0. 
Proceeding in exactly the same way as in /2/ (p. 95), and utilizing the asymptotic 

formulas (2.2), we find the limit circle (lc I(Q)) 

Now, forming the function 

from (2.1) and (2.3), we have after some reduction 

(2.3) 

(2.4) 

Turning to obtaining the needed solution of (1.9) in the interval (&,oo), we note the 
following. In this case it is necessary to obtain a formula for expanding an arbitrary 
function in the functions &~a)(chu,'6) by forming the family of functions in the parameter v 
or even the parameter a. But the spectral parameter a, which according to the method from 
/2/ is continued in the upper complex plane , is tbe value of the parameter fi for e =O, i.e., 
a = fl (0). Consequently, unlike /2/, in the case selected it is necessary to take that 
solution of (1.9) which belongs to the space L'(b,m) for e=Oand ImT/a>O. Since 
(1.9) goes over into the Legemdze equation for t3=0, and its uni$ue solution belonging to 
the space La (b, m) for Itnfa>O is the function mQT& (cb u), as results at once 
from the known asymptotic formula c/13/, p. 165), the needed solution of (1.9) will be the 
function fsiiQsY!,~_~ (ch u, e). It can be represented in the form /ll/ 

v=4?&-1 (ch u, e) = sc f2 sin (f~x)l-~ exp (ircx) JGiY x (2.5) 
(Ps? (Ch U, 8) - r (X - if fr (-x - ~)l”~Ps,.~ (ch 16, e).r 

O<U<oO 
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Therefore, the function 

can only differ 
find 

9~ (u, 4 = x (4 a) +m, (4 cp (u, a) 

from (2.5) by a constant factor. Taking account of (2.1) and (2.5) we hence 

Ps"‘(ch b, ‘3) I’ (- x - v) - Pa;;” (ch 6, i3) I? (x - v) 
m,(a)=shbL 

~r;*(ohb,B)r(%-v)-P6~(ohC,6)r(----_) (2.6) 

Omitting the intermediate computations , we present the final result (a =rZ) 

p (7) = 1~ sh (m) {L+yg (9) 1 r (V, - x + iz) 1 * + (2.7) 
W (w I r (11. +X 4- i7) i 2 I I COB [n (X + ir)l I * - 
2nc cos (SW) ch YW)}-~, T > 0, x = 'i, - P 

P (r) = 0, T = it (t > O), yvx (0) = &-" (e) [@ (@I- 

Now taking account of (2.4) and (2.7), we obtain the following expansion formula (/2/, 
PO 99) for the arbitrary function j(s) from the sufficiently general class (the necessary 
constraints on the function j(u)are mentioned in /2/) 

Furthermore, by using (2.3) and (2.61, we calculate the spectral density /2/ 

a~(~)=~nrl~m_([ma(a)-ml(a)]-'} =-&P(T) sh b[xv*(b,8)]a 

xv” (u, 0) = sv“ (‘3) Psv“ (ch u, 8) - csv-n (0) ~svq (oh u, e) 

j~s)=~xv"(~.~)~(~)r~~~xvx(Y,~)s~YjtY)dy (2.9 
0 0 

Let us examine two special cases of (2.8) when c =.O and c = co. We obtain (the upper 
and lower signs are taken corresponding to these cases) 

(2.9) 

p* (T) = s sh (fit) svx (0) sv-x (9) { I r (L/1 f x + i7) II x cos in (x + ir)l l }” 

AS 8+0 we have 

SYfv (e) --t 1, psv* (ch u, e) + PvH (ch u) 

and (2.9) goes over into the well-known Meller integral transform formula /14/, p. 398). 
To write the expansion formula (2.8) as it applies to the functions Sv~a)((ch u,9) we note 

that by taking (2.5) into account the representation (1.20) can be written in the form 

SP) (oh u, e) = A,Ps? (ch u, e) - &Psv-x (ch u, e), 
O<u<w 
A x = R, (T, 8) P E, (7) [sin (2d) KY)0 + t sin(2n8) &x(8)] 

Bx - B, (T, e) - E,, (7) [sin (2~6) m) I’ (1- 2B)(r (2&)-L J,- 

i sin (2818)&s (6) r (I - 28) (r (28))-L1 
E* (7) = Dsin (nx) sh (m)lSL exp (2~) 

It therefore follows that for c = B&x (0) [Ah-X (8)1-l the function xv* (u, I3) agrees with 
the function &W (cash u,I3) apart from a factor. Taking the last of (2.8) into aCCOU%, we 

obtain 

j(u) - f S:x(a) (ch u, 0) CI (7) T dr f SF’ (ch y, B) sh yj (y) dy 

u (T) =‘R sh (ST) a\;~ (e) h-x (ei {[B,* I r (11, - x + in) 1 * + 
Al’ ] r (‘/, +X + iZ) I ’ 1 CO8 1% (X f ir)i i *- 
2n CM (ax) oh (m) A,J3x}-L, v = --‘I, + f~ 

(2.iO) 

3, we apply the results obtained to the following contact problem. Let two identical 
stamps, in the shape of two half-planes o in planform , be displaced only translationally in 
the vertizal direction under the action of definite moments and vertical forces PO (I. VI 

distributed along their upper faces, w hi.ch have the finite resultant P, and be impressed in 
the half-space r<O. We examine this problem in the non-linear steady creep theoryfo?ZDulation, 
when the material of the half-space is subjected to the power-law dependence ai= Ksih (O<h< 1) 
131. Here ot and ti are, respectively, the stress and strain rate intensities, while 



K and h are physical constants. 
Confining ourselves to the generalized principle of superposition of the displacements 

/3/, the problem mentioned can be formulated mathematically with respect to the unknown 
contact stresses a(z,g) in the form of the integral equation 

ST P (f, 9) dE dv a-f(%Y) h 
; [(z - E)’ + (I - qw-A’* 

= -7 

t I ,A=c(h)K-Y, y=+ (3.1) 

where 6 is the settling of the stamps, f(r, 8) is a function characterizing their bases, s(h) 
is a definite constant, where c (Y,) = 0, c (I) = 1/(4JT), and c(h)70 for Y,< h< 1. We consider 
this last constraint on h to be conserved everywhere later. 

By comparing the asymptotic forms of the left and right sides of (3.1) as ii-$-", 
we find that there should be 

from which 6 is actually determined. 
Furthermore, we turn to dimensionless quantities in the integral equation (3.1) and then 

apply the Fourier integral transform in the variable t to both sides. We consequently arrive 
at the following one-dimensional integral equation 

(P, (I) = j Q, (e, #)c”dC, - &?# (a = s 8 (% B) hiz 

f, (0) = a&-lr (P + %) Is l+RLg, (r) 

-0D 

2, I; E, '1 = a?, aI; I& a;i, p = (1 - h)/2 

P (r, #) = Ah~(.r,@), g P, I) = Kb- few ah 
b. = 6/a, fo (f, La = f wf, m/Q 

Having solved (3.2), the Fourier transform ~~(8) of the generalized 

w @,8) = I-~-'lc;(~, oLqlh (4 (=, v) are the true vertical displacements) of the 
points outside the stamps will be expressed by the formula 

(3.2) 

vertical displacements 
half-space boundary 

(3.3) 

Now, considering the symmetric case of stamp loading, we represent the solution of (3.2) 
in the form 

9 8 (I)=@'- i,q 3x(r) S,x(*)(P,e)d7, r>i (3.4) 
a 

where orX(@ is an as yet unknown function. We substitute this expression for e8@) into 
(3.2), interchange the order of integration, and use the relationship (1.19) with the plus 
sign. We will have 

(8'- ~)x'P~I~,,~~X(r)S:"(g. O)dr=f,(@),Q> 1 

0 

We hence obtain by means of (2.10), in which we replace thy by 8, 

@IX(~)= (A$J1a(%)? &!i'- i)-x'*f,((p)S~(a)((g,6) d# 
0 

(3.5) 

In the symmetric case, the solution of (3.2) is therefore given by (3.4)-(3.5). 
Finally, substituting cps(@) from (3.4) into (3.3) and taking (1.21) into account with 

the plus sign, we find (O<g<i) 

It should be emphasized that in the selected case it is necessary to set O= I formally 
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into the expressions for A,',% and h=.x from (1.19) and (1.21). 
We note that the results obtained here can be applied to a fairly large number of contact 

and mixed problems of elasticity theory as well as to modified mixed problems of mathematical 
physics. The need to tabulate the functions S;(~(I,B)(O~Z<CO) and G&(arccolz)((r(<l) arises 
here; this can be achieved by using continued fractions /lo-12/. 
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ASYMPTOTIC SOLUTION OF THREE-DIMENSIONAL PROBLEB OF THE 
THEORY OF ELASTICITY OF EXTENDED PIANE SEPARATION CBA&KS* 

R.V. GOL'DSHTEIN, A.V. KAPTSOV, and L.B. KOREL'SHTEIN 

A solution of three-dimensional elasticity theory problems for separation 
cracks occupying a plane domain with one characteristic dimension much 
smaller than the other is constructed by the method of matched asymptotic 
expansions (cracks that are extended along a certain plane curve). The 

appropriate terms of the expansion of the solution in a small parameter 
characterizing the extent of the crack are constructed using an integro- 
differential equation in the displacement of points of the crack surface. 
For cracks that are extended along a line, the representation of the integro- 
differential equation in terms of a two-dimensional Fourier transform iS 

used, which substantially simplifies the calculation. In the general case, 

the expansion is executed directly in the equation written in s-space. 

The asymptotic expansion constructed is valid in the middle part of the 


